Package: tsDyn 11.0.5.2
tsDyn: Nonlinear Time Series Models with Regime Switching
Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).
Authors:
tsDyn_11.0.5.2.tar.gz
tsDyn_11.0.5.2.zip(r-4.5)tsDyn_11.0.5.2.zip(r-4.4)tsDyn_11.0.5.2.zip(r-4.3)
tsDyn_11.0.5.2.tgz(r-4.4-x86_64)tsDyn_11.0.5.2.tgz(r-4.4-arm64)tsDyn_11.0.5.2.tgz(r-4.3-x86_64)tsDyn_11.0.5.2.tgz(r-4.3-arm64)
tsDyn_11.0.5.2.tar.gz(r-4.5-noble)tsDyn_11.0.5.2.tar.gz(r-4.4-noble)
tsDyn_11.0.5.2.tgz(r-4.4-emscripten)tsDyn_11.0.5.2.tgz(r-4.3-emscripten)
tsDyn.pdf |tsDyn.html✨
tsDyn/json (API)
NEWS
# Install 'tsDyn' in R: |
install.packages('tsDyn', repos = c('https://matthieustigler.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/matthieustigler/tsdyn/issues
- IIPUs - US monthly industrial production from Hansen
- UsUnemp - US unemployment series used in Caner and Hansen
- barry - Time series of PPI used as example in Bierens and Martins
- m.unrate - Monthly US unemployment
- setarTest_IIPUs_results - Results from the setarTest, applied on Hansen (1999) data
- zeroyld - Zeroyld time series
- zeroyldMeta - Zeroyld time series
Last updated 25 days agofrom:3d5f10527d. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win-x86_64 | OK | Oct 29 2024 |
R-4.5-linux-x86_64 | OK | Oct 29 2024 |
R-4.4-win-x86_64 | OK | Oct 29 2024 |
R-4.4-mac-x86_64 | OK | Oct 29 2024 |
R-4.4-mac-aarch64 | OK | Oct 29 2024 |
R-4.3-win-x86_64 | OK | Oct 29 2024 |
R-4.3-mac-x86_64 | OK | Oct 29 2024 |
R-4.3-mac-aarch64 | OK | Oct 29 2024 |
Exports:aaraccuracy_stataddRegimear_meanautopairsautotriplesautotriples.rglavailableModelsBBCTestcharac_rootcoefAcoefBcoefPIcomputeGradientdeltadelta.lindelta.lin.testdelta.testdsigmoidfevdgetThGIRFirfisLinearKapShinTestlags.selectlinearlinear.bootlinear.simlineVarllarllar.fittedllar.predictlstarMakeThSpecMAPEmsenlarnnetTsplot_ECTpredict_rollingrank.selectrank.testregimeresample_vecresVarselectLSTARselectNNETselectSETARsetarsetar.bootsetar.simsetarTestsigmoidstartidyTVARTVAR.bootTVAR.LRtestTVAR.simTVECMTVECM.bootTVECM.HStestTVECM.SeoTestTVECM.simVAR.bootVAR.simVARrepVECMVECM_symbolicVECM.bootVECM.sim
Dependencies:clicodetoolscolorspacecurldeSolvefansifarverforeachforecastfracdiffgenericsggplot2gluegtableisobanditeratorsjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmnormtmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangsandwichscalesstrucchangetibbletimeDatetseriestseriesChaosTTRurcautf8varsvctrsviridisLitewithrxtszoo
Threshold cointegration: overview and implementation in R
Rendered fromThCointOverview.Rnw
usingutils::Sweave
on Oct 29 2024.Last update: 2020-12-03
Started: 2012-02-13
tsDyn: Nonlinear autoregressive time series models in R
Rendered fromtsDyn.Stex
usingutils::Sweave
on Oct 29 2024.Last update: 2020-11-30
Started: 2012-02-13